---
title: "rhandsontable Introduction"
author: "Jonathan Owen"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{rhandsontable Introduction}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
---
```{r echo = FALSE, warning = FALSE}
library(rhandsontable)
library(knitr)
opts_knit$set(warning = FALSE, error = FALSE, message = FALSE, cache = FALSE,
fig.width=7, fig.height=3)
```
## Introduction
**rhandsontable** is a htmlwidget based on the [handsontable.js](https://handsontable.com) library.
> Handsontable is a data grid component with an Excel-like appearance. Built in JavaScript, it integrates with any data source with peak efficiency. It comes with powerful features like data validation, sorting, grouping, data binding, formula support or column ordering.
([via](https://handsontable.com))
## Column Types
The table includes support for numeric, logical, character and Date types. Logical values will appear as check boxes, and the [pikaday.js](https://github.com/Pikaday/Pikaday) library is used to specify Date values.
rhandsontable attempts to map R classes to an appropriate handsontable type. Factors will be mapped to `dropdown`, with the choices specified by `level` and `allowInvalid` set to `FALSE`. To allow new levels, set `allowInvalid` to `TRUE` (using `hot_col`; it may also be desirable to set `strict` to `FALSE`). When running in `shiny`, using `hot_to_r` will preserve custom factor ordering, and if new levels are allowed, they will be added to the end.
```{r}
DF = data.frame(integer = 1:10,
numeric = rnorm(10),
logical = rep(TRUE, 10),
character = LETTERS[1:10],
factor = factor(letters[1:10], levels = letters[10:1],
ordered = TRUE),
factor_allow = factor(letters[1:10], levels = letters[10:1],
ordered = TRUE),
date = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, width = 600, height = 300) %>%
hot_col("factor_allow", allowInvalid = TRUE)
```
To improve readability, `NA` values will be displayed as blank cells. This requires converting columns containing `NA` to characters, and in the case of factors and Dates, may not display the data in the desired format. It may be beneficial to convert these type of columns to character before passing to `rhandsontable`.
```{r}
DF_na = data.frame(integer = c(NA, 2:10),
logical = c(NA, rep(TRUE, 9)),
character = c(NA, LETTERS[1:9]),
factor = c(NA, factor(letters[1:9])),
date = c(NA, seq(from = Sys.Date(), by = "days",
length.out = 9)),
stringsAsFactors = FALSE)
DF_na$factor_ch = as.character(DF_na$factor)
DF_na$date_ch = c(NA, as.character(seq(from = Sys.Date(), by = "days",
length.out = 9)))
rhandsontable(DF_na, width = 550, height = 300)
```
### Dropdown / Autocomplete
To control character column values, the column type can be specified as `dropdown` or `autocomplete`.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
# try updating big to a value not in the dropdown
rhandsontable(DF, rowHeaders = NULL, width = 550, height = 300) %>%
hot_col(col = "big", type = "dropdown", source = LETTERS) %>%
hot_col(col = "small", type = "autocomplete", source = letters,
strict = FALSE)
```
### Password
A column can also be specified as a `password` type.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, width = 550, height = 300) %>%
hot_col("small", "password")
```
### Sparkline
New in version 0.2, [sparkline.js](https://omnipotent.net/jquery.sparkline/) charts can be added to the table. Thanks to the sparkline package and Ramnath Vaidyanathan for inspiration.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
DF$chart = c(sapply(1:5,
function(x) jsonlite::toJSON(list(values=rnorm(10),
options = list(type = "bar")))),
sapply(1:5,
function(x) jsonlite::toJSON(list(values=rnorm(10),
options = list(type = "line")))))
rhandsontable(DF, rowHeaders = NULL, width = 550, height = 300) %>%
hot_col("chart", renderer = htmlwidgets::JS("renderSparkline"))
```
### Custom Renderer
It's also possible to define a custom column renderer function. For example, it may be desirable to include html in a cell. The example below mimics [Custom renderers](https://handsontable.com/docs/4.0.0/demo-custom-renderers.html).
```{r fig.height = 5, fig.width = 8}
DF = data.frame(
title = c(
"Professional JavaScript for Web Developers",
"JavaScript: The Good Parts",
"JavaScript: The Definitive Guide"
),
desc = c(
"This book provides a developer-level introduction along with more advanced and useful features of JavaScript.",
"This book provides a developer-level introduction along with more advanced and useful features of JavaScript.",
"JavaScript: The Definitive Guide provides a thorough description of the core JavaScript language and both the legacy and standard DOMs implemented in web browsers."
),
comments = c(
"I would rate it ★★★★☆",
"This is the book about JavaScript",
"I've never actually read it, but the comments are highly positive."
),
cover = c(
"http://ecx.images-amazon.com/images/I/51bRhyVTVGL._SL50_.jpg",
"http://ecx.images-amazon.com/images/I/51gdVAEfPUL._SL50_.jpg",
"http://ecx.images-amazon.com/images/I/51VFNL4T7kL._SL50_.jpg"
),
stringsAsFactors = FALSE
)
rhandsontable(DF, allowedTags = "",
width = 800, height = 450, rowHeaders = FALSE) %>%
hot_cols(colWidths = c(200, 200, 200, 80)) %>%
hot_col(1:2, renderer = "html") %>%
hot_col(1:3, renderer = htmlwidgets::JS("safeHtmlRenderer")) %>%
hot_col(4, renderer = "
function(instance, td, row, col, prop, value, cellProperties) {
var escaped = Handsontable.helper.stringify(value),
img;
if (escaped.indexOf('http') === 0) {
img = document.createElement('IMG');
img.src = value;
Handsontable.dom.addEvent(img, 'mousedown', function (e){
e.preventDefault(); // prevent selection quirk
});
Handsontable.dom.empty(td);
td.appendChild(img);
}
else {
// render as text
Handsontable.renderers.TextRenderer.apply(this, arguments);
}
return td;
}")
```
For `shiny` apps, use `renderer = htmlwidgets::JS("safeHtmlRenderer")` to display columns with html data. The allowed html tags default to ``, but the (hidden) `allowedTags` parameter can in `rhandsontable` can be used to customize this list.
#### Custom Renderer using an R Parameter {#custom_renderer_using_r}
Additional parameters passed to `rhandsontable` will be available to the JavaScript widget via the `params` property.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
col_highlight = 2
row_highlight = c(5, 7)
rhandsontable(DF, col_highlight = col_highlight,
row_highlight = row_highlight,
width = 550, height = 300) %>%
hot_cols(renderer = "
function(instance, td, row, col, prop, value, cellProperties) {
Handsontable.renderers.TextRenderer.apply(this, arguments);
tbl = this.HTMLWidgets.widgets[0]
hcols = tbl.params.col_highlight
hcols = hcols instanceof Array ? hcols : [hcols]
hrows = tbl.params.row_highlight
hrows = hrows instanceof Array ? hrows : [hrows]
if (hcols.includes(col) && hrows.includes(row)) {
td.style.background = 'red';
}
else if (hcols.includes(col)) {
td.style.background = 'lightgreen';
}
else if (hrows.includes(row)) {
td.style.background = 'pink';
}
return td;
}")
```
When using this approach in a shiny app or in a document with more than one widget, the widget search logic will need to be more robust.
```
HTMLWidgets.widgets.filter(function(widget) {
// this should match the table id specified in the shiny app
return widget.name === "hot"
})[0];
```
## Right-Click Menu
Right-clicking in a cell will enable a context menu that includes customizable table actions via the `hot_context_menu` function. For shiny apps, formatting and comment updates made via the context menu are not currently retained.
To disable the context menu, set `contextMenu = FALSE` in `hot_table` (or `rhandsontable`).
### Add / Remove Rows & Columns
By default a user can add or remove table rows and columns, but this functionality can be disabled. Note that Handsontable does not allow column be added or deleted to the table if column types are defined (i.e. `useTypes == TRUE` in `rhandsontable`).
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, width = 550, height = 300) %>%
hot_context_menu(allowRowEdit = FALSE, allowColEdit = FALSE)
```
### Customizing
The `customOpts` parameter of `hot_context_menu` can be used to add custom functionality to the context menu. Below are a couple examples.
#### Export to CSV
This example illustrates how to add an option to export the table to a csv file.
```{r, warning = FALSE}
MAT = matrix(rnorm(50), nrow = 10, dimnames = list(LETTERS[1:10],
letters[1:5]))
rhandsontable(MAT, width = 550, height = 300) %>%
hot_context_menu(
customOpts = list(
csv = list(name = "Download to CSV",
callback = htmlwidgets::JS(
"function (key, options) {
var csv = csvString(this);
var link = document.createElement('a');
link.setAttribute('href', 'data:text/plain;charset=utf-8,' +
encodeURIComponent(csv));
link.setAttribute('download', 'data.csv');
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
}"))))
```
#### Search
This example illustrates how to enable the search functionality in Handsontable.
```{r, warning = FALSE}
DF = data.frame(val = 1:10,
bool = TRUE,
big = LETTERS[1:10],
small = factor(letters[1:10]),
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, search = TRUE, width = 550, height = 300) %>%
hot_context_menu(
customOpts = list(
search = list(name = "Search",
callback = htmlwidgets::JS(
"function (key, options) {
var srch = prompt('Search criteria');
this.search.query(srch);
this.render();
}"))))
```
Future enhancements will look to expand export options.
## Numeric Formatting
Numeric columns are formatted using the [numbro.js](https://numbrojs.com/) library.
```{r}
DF = data.frame(int = 1:10, float = rnorm(10), cur = rnorm(10) * 1E5,
lrg = rnorm(10) * 1E8, pct = rnorm(10))
rhandsontable(DF, width = 550, height = 300) %>%
hot_col("float", format = "0.0") %>%
hot_col("cur", format = "$0,0.00") %>%
hot_col("lrg", format = "0a") %>%
hot_col("pct", format = "0%")
```
### Specify Locale
The `language` parameter for `hot_col` can be used to change the locale. See the [numeral.js](http://numeraljs.com/) library for language options.
```{r}
DF = data.frame(dollar = rnorm(10), euro = rnorm(10), yen = rnorm(10))
rhandsontable(DF * 1000, width = 550, height = 300) %>%
hot_col("dollar", format = "$0,000.00", language = "en-US") %>%
hot_col("euro", format = "0,000.00 $", language = "de-DE") %>%
hot_col("yen", format = "$0,000.00", language = "ja-JP")
```
## Read Only
The whole table and individual columns can to set to `readOnly` to prevent the user from making changes.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, readOnly = TRUE, width = 550, height = 300) %>%
hot_col("val", readOnly = FALSE)
```
## Sorting
Column sorting can be enabled; sorting only impacts the widget and will not reorder the original data set.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, width = 550, height = 300) %>%
hot_cols(columnSorting = TRUE)
```
## Highlight Rows & Columns
With larger tables it my be desirable to highlight the row and column for a selected cell.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
# click on a cell to see the highlighting
rhandsontable(DF, width = 550, height = 300) %>%
hot_table(highlightCol = TRUE, highlightRow = TRUE)
```
See [Custom Renderer using an R Parameter](#custom_renderer_using_r) for a static highlighting example.
## Sizing
Column and row dimensions can be customized. For larger data sets, (multiple) top rows and left columns can be frozen.
```{r fig.height = 6, fig.width = 6}
MAT = matrix(rnorm(50), nrow = 10, dimnames = list(LETTERS[1:10],
letters[1:5]))
rhandsontable(MAT, width = 600, height = 600) %>%
hot_cols(colWidths = 100) %>%
hot_rows(rowHeights = 50)
```
### Row Header Width
The width of the row header column can be customized using `rowHeaderWidth`.
```{r fig.height = 6, fig.width = 6}
rhandsontable(mtcars, rowHeaderWidth = 200)
```
### Streching
The table can be streched to the full width by using `stretchH`.
```{r fig.height = 6, fig.width = 6}
MAT = matrix(rnorm(30), nrow = 10, dimnames = list(LETTERS[1:10],
letters[1:3]))
rhandsontable(MAT, width = 600, height = 300, stretchH = "all")
```
## Fixed Rows / Columns
For larger data sets, (multiple) top rows and left columns can be frozen.
```{r}
MAT = matrix(rnorm(26 * 26), nrow = 26, dimnames = list(LETTERS, letters))
# scroll through the table to see the fixed row and column
rhandsontable(MAT, width = 550, height = 300) %>%
hot_cols(fixedColumnsLeft = 1) %>%
hot_rows(fixedRowsTop = 1)
```
## Cell Comments
Comments (hover) can also be added to individual cells and will appear as red flags in the upper right of the cell.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, width = 550, height = 300) %>%
hot_cell(1, 1, "Test comment")
```
Additionally, comments can be added via `data.frame` or `matrix`.
```{r}
MAT_comments = matrix(ncol = ncol(DF), nrow = nrow(DF))
MAT_comments[1, 1] = "Test comment"
MAT_comments[2, 2] = "Another test comment"
rhandsontable(DF, comments = MAT_comments, width = 550, height = 300)
```
Finally, comments can also be added via the right-click context menu, but these updates will not currently be retained by shiny.
## Borders
Custom borders can be drawn around cells to highlight specific items. Borders can also be added via the right-click context menu, but these updates will not currently be retained by shiny.
```{r}
MAT = matrix(rnorm(50), nrow = 10, dimnames = list(LETTERS[1:10],
letters[1:5]))
rhandsontable(MAT, width = 550, height = 300) %>%
hot_table(customBorders = list(list(
range = list(from = list(row = 1, col = 1),
to = list(row = 2, col = 2)),
top = list(width = 2, color = "red"),
left = list(width = 2, color = "red"),
bottom = list(width = 2, color = "red"),
right = list(width = 2, color = "red"))))
```
## Validation
### Numeric Columns
Pre-defined validation can be added for numeric columns in two ways:
* specify a min and max and any values within the range to exclude
* similar to a `dropdown` column, specify allowed values
```{r}
MAT = matrix(rnorm(50), nrow = 10, dimnames = list(LETTERS[1:10],
letters[1:5]))
rhandsontable(MAT * 10, width = 550, height = 300) %>%
hot_validate_numeric(col = 1, min = -50, max = 50, exclude = 40)
rhandsontable(MAT * 10, width = 550, height = 300) %>%
hot_validate_numeric(col = 1, choices = c(10, 20, 40))
```
### Character Columns
For character columns, a vector of allowed options can be specified. A more user-friendly approach may be to use a `dropdown` column with `strict = TRUE`.
```{r}
DF = data.frame(val = 1:10, bool = TRUE, big = LETTERS[1:10],
small = letters[1:10],
dt = seq(from = Sys.Date(), by = "days", length.out = 10),
stringsAsFactors = FALSE)
rhandsontable(DF, width = 550, height = 300) %>%
hot_validate_character(col = "big", choices = LETTERS[1:10])
```
### Custom
It is also possible to create a custom validation function in JavaScript.
```{r}
MAT = matrix(rnorm(50), nrow = 10, dimnames = list(LETTERS[1:10],
letters[1:5]))
# try to update any cell to 0
rhandsontable(MAT * 10, width = 550, height = 300) %>%
hot_cols(validator = "
function (value, callback) {
setTimeout(function(){
callback(value != 0);
}, 1000)
}",
allowInvalid = FALSE)
```
## Conditional Formatting
Conditional formatting can also be specified via custom JavaScript function. Future enhancements will look to simplify this interface.
```{r, fig.width = 8}
MAT = matrix(runif(100, -1, 1), nrow = 10,
dimnames = list(LETTERS[1:10], LETTERS[1:10]))
diag(MAT) = 1
MAT[upper.tri(MAT)] = MAT[lower.tri(MAT)]
rhandsontable(MAT, readOnly = TRUE, width = 750, height = 300) %>%
hot_cols(renderer = "
function (instance, td, row, col, prop, value, cellProperties) {
Handsontable.renderers.TextRenderer.apply(this, arguments);
if (row == col) {
td.style.background = 'lightgrey';
} else if (col > row) {
td.style.background = 'grey';
td.style.color = 'grey';
} else if (value < -0.75) {
td.style.background = 'pink';
} else if (value > 0.75) {
td.style.background = 'lightgreen';
}
}")
```
See [Custom Renderer using an R Parameter](#custom_renderer_using_r) for another example.
## Heatmap
The [chroma.js](http://old.driven-by-data.net/about/chromajs/) library can be used to turn the table into a heatmap.
```{r}
MAT = matrix(rnorm(50), nrow = 10, dimnames = list(LETTERS[1:10],
letters[1:5]))
rhandsontable(MAT, width = 550, height = 300) %>%
hot_heatmap()
```
## Big Data
```{r}
MAT = matrix(rnorm(10000 * 100), nrow = 100, dimnames= list(1:100, 1:10000))
rhandsontable(MAT, width = 550, height = 550)
```
## Shiny
**Important note on shiny use:** The `htmlwidgets` package creates widgets as shiny output bindings. The `rhandsontable` package also attempts to expose the table as a *pseudo* shiny input binding using handsontable change events (see [here](https://github.com/jrowen/rhandsontable/blob/master/inst/htmlwidgets/rhandsontable.js) for the supported events). **This means the table (e.g. `hot`) can be accessed in shiny using either `input$hot` or `output$hot`, but these values may not be in-sync.** The timing of updates will depend on the particular reactive path followed by your shiny application.
Since the widget is not currently able to use the standard shiny input binding functionality, you will need to explicitly call the `hot_to_r` function to convert the handsontable data to an R object.
Two additional inputs are also enabled, `input$hot_select` and `input$hot_comment`, which will fire when a cell selection or a comment changes, respectively (if you would like to see more options, please post an issue or create a PR).
This functionality is still evolving, so please don't hesitate to share suggestions and PRs.
The data grid will be editable by default and can be used as input to a `shiny` app. A few `shiny` and `shinydashboard` example links are listed below. Note that the shinyapps.io links may not work if the has hit the monthly usage limit.
* **Output only**
```
shiny::runGitHub("rhandsontable", "jrowen",
subdir = "inst/examples/rhandsontable_output")
```
* **Date file editor**
```
shiny::runGitHub("rhandsontable", "jrowen",
subdir = "inst/examples/rhandsontable_datafile")
```
* **Calculation input**
```
shiny::runGitHub("rhandsontable", "jrowen",
subdir = "inst/examples/rhandsontable_portfolio")
```
* **Table callback linked to chart**
```
shiny::runGitHub("rhandsontable", "jrowen",
subdir = "inst/examples/rhandsontable_corr")
```
* **Multiple input tables**
```
shiny::runGitHub("rhandsontable", "jrowen",
subdir = "inst/examples/rhandsontable_frontier")
```
* **A shinydashboard app**
```
shiny::runGitHub("rhandsontable", "jrowen",
subdir="inst/examples/rhandsontable_dash")
```
### Bookmarks
Version 0.14 of `shiny` includes new bookmarking functionality. This willl work for `rhandsontable` with some special handling. See [this issue](https://github.com/rstudio/shiny/issues/1378) for more details.
## Suggestions & Contributions
Please file a issue if you experience any problems with the widget or have feature requests. Pull requests are also welcome.